COMPLEX BIOMECHANICAL ANALYSIS OF BOBSLEIGH START

Jan-Peter Goldmann1,2, Bjoern Braunstein1,2, Kai Heinrich1, Maximilian Sanno1,2, Fabian Göll1,2, René Spies3, André Sander3, Gert-Peter Brüggemann1

Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany1, The German Research Centre of Elite Sport, German Sport University Cologne, Cologne, Germany2, German Bobsleigh Luge and Skeleton Federation (BSD), Berchtesgaden, Germany3

The applied session gives insights into the analysis of bobsleigh start performance and the collaboration of the German Sport University Cologne, The German Bobsleigh Luge and Skeleton Federation and The German Research Centre of Sport Science in Germany.

The push start and acceleration phase in bobsleigh is a major factor in the determination of high bob velocities and therefore final race times1, 2, 3. Analysis of bobsleigh starts at the Olympic Games in Calgary2 and Lillehammer3 clarified that start times and final race times are highly correlated(0.6 < r < 0.86, p < 0.05). For that, the leg extensor muscles have to produce high mechanical power output at the ankle, knee and hip to propel the athlete’s body and the sled forward.

The set up includes up to 16 IR-Highspeed-Cameras and three force plates. For the analysis of the push start and acceleration phase, the bobsleigh is arranged on an 80 m-Rail-System in the track and field hall.